Modelling air quality according to INSPIRE data specifications, ISO standards and national regulations

Wojciech PACHELSKI1) A, Agnieszka ZWIROWICZ-RUTKOWSKA2) ACE, Anna MICHALIK3) BDF

1) Military University of Technology, Faculty of Civil Engineering and Geodesy, Warszawa, Poland
2) University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering, Olsztyn, Poland; e-mail: agnieszka.zwirowicz@uwm.edu.pl
3) Pracownia Urbanistyczna Urbaneo, Olsztyn, Polska

Abstract

Protection of the environment is an activity of many institutions, organizations and communities from global to regional and local scales. Any activity in this area needs structured database records, using advanced methodology, given, among others, in INSPIRE documents, ISO standards of 19100 series, and national regulations. The goal of this paper is to analyse both the legal provisions related to the air quality and also data sources associated with the prevention of air pollution. Furthermore, the UML application schema of the spatial data related to the air protection is proposed, for the use by urban planners. Also, the overview of the methodology of geographic information is given, including the Unified Modelling Language (UML), as well as the basic concepts of conceptual models within the INSPIRE project. The study is based on the relevant literature and documents, as well as on the expert knowledge gained through urban planning practice, as presented in this paper, is an example of how to use the methodology also in other fields of the environment protection. Spatial planners know how to improve the air quality, but in the present state of law they often suffer from the lack of planning tools for real actions. In the spatial planners work an important issue are data that allow a thorough analysis of the area.

Key words: air pollution, application schema, INSPIRE directive, ISO standards of 19100 series, the Unified Modelling Language (UML), urban planning

INTRODUCTION

Supporting environmental policies, including a number of thematic branches, essential for sustainable development of the country and society, is one of the main goals of the spatial data infrastructure, built and developed under the Polish national act on spatial information infrastructure [Ustawa… 2010], the INSPIRE directive [Directive 2007/2/CE], and the INSPIRE implementing rules. The INSPIRE directive and implementing acts use the concepts of methodology and technology for spatial information. This knowledge is contained mainly in the ISO 19100 series of standards.

Among the 34 spatial data themes of INSPIRE, listed in the Directive 2007/2/CE there are more than 20 directly related to the geographical environment and its protection. Many of the remaining topics are also related to the environment, however. The directive, as well as the implementing rules and specifi-
cations, present methodological concepts how to describe information models in any of the various themes. The methodology combines the methods of spatial location of geographic objects, which belong to the domain of geodesy and cartography, with the methods of data management that belong to information technology (computer science). Thus, this is a consistent methodology for modelling and development of geographical information systems, which is usually recognized as a subject of geoinformatics and is fully presented in the ISO standards of the 19100 series.

The aim of the paper is to analyse both the legal provisions with regard to the quality of the air and also data sources related to the air protection, in the issues of urban planning. Furthermore, the UML application schema of the spatial data related to the air protection is proposed, for the use by urban planners. Also, the overview of the methodology of geographic information is given, including the Unified Modelling Language (UML), as well as the basic concepts of conceptual models within the INSPIRE project.

OVERVIEW OF LEGAL PROVISIONS REGARDING AIR QUALITY

One of the ways to support clean air is urban planning (e.g. Jakubiak, Urbanski [2016]). Secomski [1972] in an analysis of trends in the theory of spatial planning shows that the most noticeable are works dedicated to the environment protection. According to Bartkowicz [1975] the goal of urban planning is first of all to reduce the existing and possible in the future expansion of atmospheric pollution.

Basic concerns for the protection of the environment and conditions for the use of its resources are determined by the law of the environment protection [Ustawa... 2001]. In addition to the definition of sustainable development (significant for urban planning) the act contains a number of regulations, also for national environmental monitoring. Specific information are contained in the implementing acts to the law of the environment protection, of which the most important is the regulation of the minister of the environment on the levels of content of certain substances in the air [Rozporządzenie MS... 2012a].

Moreover, assemblies of the regions may, by a resolution, in order to prevent negative effects on human health or on the environment, introduce restrictions or prohibitions as to the burning of certain substances. The first Polish resolution against smog was adopted in the Małopolskie Voivodeship.

Certainly a change in policy on the protection of the air (also in Poland) took place after the adoption of the Directive on air quality and cleaner air for Europe [Directive 2008/50/CE]. In addition to the need to reduce pollution and improve the monitoring and assessment of air quality the Directive drew attention also to the need to inform the public. It highlighted the need to adapt the procedures for data exchange, assessment of and reporting on the quality of the air, and (importantly) ensure the coherence of these procedures with the Directive establishing an infrastructure for spatial information (INSPIRE) [Directive 2007/2/CE]. From the point of view of a spatial planning, as this activity refers to the space, it is important that the directive [Directive 2008/50/CE] indicated that, in order to ensure proper information about the spatial distribution of air quality, the measurements can be supplemented by indicative measurements or modelling techniques.

The Polish Act on spatial planning does not raise directly the need of air protection [Ustawa... 2003]. It refers only to the environment as a whole, of which the air is an element.

DATA SOURCES FOR URBAN PLANNING RELATED TO THE AIR POLLUTION PREVENTION

In the spatial planning an important issue are data that allow a thorough analysis of the area. The larger is the scope of the study, the more difficult is to obtain homogeneous data. On the other hand, by analysing a small area, for example referring to a single parcel, it could be found that there is no reliable data in such detail.

Currently, the spatial data infrastructure (e.g. Zwirowicz-Rutkowska, Michalik [2016]) provides the ability to exchange information. Widely understood geographical information systems enable users to perform advanced analyses, and with the right data allow them to automate some of the calculations (e.g. Bouguerra et al. [2017]). The analysis of the data sources presented in this section focuses on the internet sources, geoportals and geoinformation web-sites.

Spatial planning activities (in the development of planning documents), focused on possible improvement of the air quality in a particular area, can be divided into four main stages: identification of the problem, collecting data and materials, and analyses, studies and design work.

The first stage, the identification of the problem, is the most important issue. The question whether the degree of air pollution in the past, present or as a forecast for the future can adversely affect the health of the inhabitants has to be answered. Extremely valuable data are collected in Poland by the Main Inspectorate of Environmental Protection (Pol. Główny Inspektorat Ochrony Środowiska – GIOŚ); they concern both the current measurement data, as well as warnings. Part of the information is referred to points (stations), part to the zone. New feature is the ability to download certain data in the shape format. On the website of GIOŚ the location of industrial units and air releases can be found.

The second stage within the spatial planning consists in gathering any source materials relating to the characteristics of the area. Spatial data should be supplemented with a descriptive information. Available services may be helpful, including Web Map Service/Web Map Tile Service (WMS/WMTS). Valuable
are maps of CORINE Land Cover – among 31 land cover classes, particularly important are those relating to the continuous urban fabric, industrial units, transport areas, as well as green areas. From the point of view of the spread of air pollution, it is also important the topographical relief, which can be analyzed using the Information System of Flood Protection (Pol. Informatyczny System Ochrony Kraju – ISOK) numerical terrain model – shading and hipo-
sometria, also available as WMS through the national geoportal. Important is also the wind speed and direc-
tion, which can be helpful in the design of both city-
wide and individual investments. Available source of
information on forests are websites of the company State Forests (Pol. Lazy Państwowe) that provide not
only maps of forest stands, but also of the spa forests
and industrial damage zones. On the other hand, maps
of plant communities or forest habitats can be ob-
tained directly from the data bank of the forests (Pol.
Bank Danych Lokalnych – BDL). In the publication
by Różański [1959] it turns out that the size and na-
ture of the surface of the city and of the lake affect
greater ability to exchange air and self-cleaning of
the atmosphere. For this reason, it should be considered
location of surface water, for example, by using the
webservice of the National Board of Water, Flood
Risk Monitoring System (Pol. Krajowy Zarząd Go-
spodarki Wodnej, System Monitoringu Rzyzyka Po-
wodziowego) or WMS presenting the hydrographic
map of Poland. Spatial data concerning communica-
tion networks are important from the perspective of
determining ecological corridors and natural breaks
between the high buildings in the cities.

The third phase in spatial planning in drawing up
the planning document should focus on the analyses
and studies. Czarnecki [1964; 1965] lists meteoroe-
tical and climate research. Due to the time required
for an advanced analysis it is worth taking advantage
of the rich and effective GIS tools. Collected in the
second phase materials is requires supplementing with
vector data.

The most important of the editable data provided by
GIOŚ is the air quality assessment for each zone,
longstanding evaluation, and long-term forecasts.
Relevant data also having an indirect impact on the
level and scale of air pollution, are provided by differ-
et institutions, for instance by the General Direc-
torate for the Environmental Protection (Pol. General-
na Dyrekcja Ochrony Środowiska), which shows the
location of the forms of nature conservation and the
projects of ecological corridors.

A great move was free sharing by Geodetic and
Cartography Documentation Centre (Pol. Centralny
Ośrodek Dokumentacji Geodezyjnej i Kartograficz-
nej– CODGiK) of the data, including, in particular
BDOO (Pol. Baza Danych Obiektów Ogólnogeogra-
ficznych – Geographic Database) and BDOT (Pol.
Baza Danych Obiektów Topograficznych – Topogra-
phic Database) databases. Różański [1959] noted that
a significant number of buildings, chimneys, streets is
very rough background on which the wind loses its
energy. Laskowski [1987] introduces the wind speed
profiles with different surface roughness of the ter-
rain. Data on the land use affecting the coarseness or
roughness, could be found in the BDOO. CODGiK
provides data for the numerical terrain model of the
grid interval at least 100 m (NMT_100). Based on
study of the terrain and spatial objects located in
a specific area new air corridors could be designed or
existing ones could be verified.

The next phase of spatial planning should include
design activities. These works may have a significant
impact on air quality, although the planning tools are
sometimes inadequate to conduct consistent spatial
policy.

METHODS

The above conditions and features compose
a frame for building up an information system for
compound monitoring air quality. This requires a spe-
cial formalism, which, according to INSPIRE and ISO
standards, is covered by a methodological concept,
the so-called MDA (Model Driven Approach), con-
isting of the following four phases:

1) CIM (Computation Independent Model): general
 specification of the data model, showing the tech-
nical and operational assumptions and the roles of
 the participants;

2) PIM (Platform Independent Model): the basic
 phase of this methodology, providing a conceptual
 model;

3) PSM (Platform Specific Model): a logical model,
 adopted to a specific, out of the various possible,
 implementation techniques; the INSPIRE and ISO
 standards recommend using the languages XML
 and GML for geographical information; advanced
 tools such as Enterprise Architect, allow for full or
 partial automation of transformation from concep-
tual to logical model;

4) implementation: the creation of the so-called
 a physical model regarding a given hardware –
 software platform; concerns transforming logical
 structures to the platform specific architecture.

Among the existing formal languages and nota-
tions for conceptual modelling (the phase PIM) the
most advanced is the conceptual schema language
called the UML – Unified Modelling Language. This
language is widely used and recommended by ISO
19100 series standards and INSPIRE s to describe
conceptual models built in all areas of geographic
information.

A conceptual model is in UML basically a class
diagram, of which main categories are (ISO 19103
2015):

- class: a description of a group of objects that have
 the same meaning, attributes, operations, methods,
 and associations;
- stereotype: an extension of the meaning of data
 types and classes;
- attribute: a representation of features common to
 all objects of a particular class;
Fig. 1. The Unified Modelling Language application schema for spatial data used in tasks of urban planners related to the air pollution prevention; source: own study
– operation: representation of the services.
– different types of relationships between the classes in UML are the following:
 – association: a semantic connection between two instances;
 – navigation: directed association;
 – aggregation: “components” are parts of “container”;
 – composition: strong aggregation – “components” do not exist without the “container”;
 – generalization: a relationship between an element and the sub elements;
– dependency: the use of one element by another.

AN UNIFIED MODELLING LANGUAGE (UML) APPLICATION SCHEMA FOR SPATIAL DATA RELATED TO AIR PROTECTION

Figure 1 shows the data model as an UML conceptual schema (class diagram) for air protection using the perspective of the urban planning and taking into account features discussed in sections 2 and 3.

The basic conceptual categories of the model shown in Fig. 1 are: classes (e.g. Air), packages (e.g. AdministrativeUnits), attributes (e.g. measuringStation in the class Air), stereotypes (e.g. <<Feature-Type>>, <<CodeList>>, a navigable association (classes OS_ProtectedArea and OS_ReferenceTo Feature) and associations with either the composition or shared aggregation (e.g. there is the composition between classes Forest and ForestHabitat), as well as generalizations or specifications (e.g. between classes Forest and SuburbanForest).

The classes OS_ProtectedArea, OS_ReferenceTo Feature, OS InternacionalProtection, as well as the enumeration OS_Type are taken from the data model “Environmental protection” [PARZYŃSKI, CHOJKA 2013], which refers to the regulation of the Minister of Environment on the central register of forms of nature protection [Rozporządzenie MS... 2012h]. According to PARZYŃSKIand CHOJKA[2013] some forms of complete or partial protection may be a subject of international protection.

The UML packages, which are a general purpose mechanism for grouping items, refer to information structures of the registries held by the geodetic and cartographic service. The names of the packages are taken from the UML application schemas described in the regulations concerning BDOT 10K (Pol. Baza Danych Obiektów Topograficznych, Database of Topographic Objects), scale 1:10 000, BDOO (Pol. Baza Danych Obiektów Ogólnogeograficznych, Database of Geographical Objects) and EGiB (Pol. Ewidencja Gruntów i Budynków, Cadastre) databases [Rozporządzenie MRBiB... 2001; Rozporządzenie MSWiA... 2011; 2015]. Data from these registers are important reference data, also in spatial planning associated with air protection.

CONCLUSIONS

The presented here Unified Modelling Language (UML) application schema for environmental aspects related to air protection in tasks of spatial planners proposed in this paper may be in general considered as an example or case study of using the Model Driven Approach (MDA) according to ISO standards and INSPIRE also in other fields of environment protection.

From the point of view of the air pollution prevention issues and realization of this task by urban planners and use of many data sources it should be continued acquiring reliable spatial information with high accuracy. Valuable are also data presented in terms of time, not only historical one, but also projected one.

It is strongly recommended to share data in an editable format which will facilitate their exchange. In this much helpful may be the GIS technology with its wide range of forms of data sharing, including WFS and GML. Data on air quality are specialized. Some impediment in the work of the spatial planners and urbanists is the lack of a single, clear terminology concerning data on air quality.

Spatial planners have knowledge on how they can improve air quality, but in the present state of law sometimes there is a lack of planning tools for concrete actions. It should be also pointed out that the protection of the air in the work of the urbanists is one of the many elements that should be taken into account.

Acknowledgement

Dofinansowano ze środków Wojewódzkiego Funduszu Ochrony Środowiska i Gospodarki Wodnej w Lublinie Cofinanced by Voivodeship Fund for Environmental Protection and Water Management in Lublin

REFERENCES

Rozporządzenie Ministra Administracji i Cyfryzacji z dnia 2 listopada 2015 r. w sprawie bazy danych obiektów topograficznych oraz mapy zasadniczej [Regulation of the Minister of Administration and Digitization of November 2, 2015 on the database of topographic objects and basic map]. Dz.U. 2015 poz. 2028.

Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 17 listopada 2010 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych [Regulation of the Minister of Internal Affairs and Administration of November 17, 2011 on the database of topographic objects and database of geographical objects, as well as standard cartographic studies]. Dz.U. 2011. Nr 279 poz. 1642.

Rozporządzenie Ministra Środowiska z dnia 24 sierpnia 2012 r. (a) w sprawie poziomów niektórych substancji w powietrzu [Regulation of the Minister of the Environment of August 24, 2012 on the levels of certain substances in the air]. Dz.U. 2012 poz. 1031.

Rozporządzenie Ministra Środowiska z dnia 11 września 2012 r. (b) w sprawie centralnego rejestru form ochrony przyrody [Regulation of the Minister of the Environment of September 11, 2012 on the central register forms of nature protection]. Dz.U. 2012 poz. 1080.

Wojciech PACHELSKI, Agnieszka ZWIROWICZ-RUTKOWSKA, Anna MICHALIK

Modelowanie zagadnienia jakości powietrza według specyfikacji danych INSPIRE, norm ISO i rozporządzeń krajowych

STRESZCZENIE

Ochrona środowiska jest przedmiotem działalności wielu instytucji, organizacji i środowisk w skalach od ogólnoświatowej do regionalnej i lokalnej. Wszelka aktywność w tym zakresie musi być z konieczności oparta na usystematyzowanych formach rejestrów bazodanowych, wykorzystujących zaawansowane koncepcje metadanych, zawarte m.in. w dokumentach INSPIRE, normach ISO serii 19100 oraz krajowych regulacjach prawnych. Celem publikacji jest analiza przepisów prawnych, w odniesieniu do zagadnienia jakości powietrza, a także źródeł danych wykorzystywanych w pracach planistów, związanych z zapobieganiem zanieczyszczeniom powietrza. Ponadto zaproponowano schemat aplikacyjny zuniﬁkowanego języka modelowania (UML) odnoszący się do danych przestrzennych wykorzystywanych w zadaniach urbanistów w zakresie ochrony powietrza. Oprócz tego zaprezentowano przegląd koncepcji z zakresu metodologii informacji geograficznej, w tym języka formalnego UML, a także podstawowych koncepcji przedmiotowych w postaci modeli pojęciowych używanych w ramach projektu INSPIRE. Badania bazowały na przeglądzie literatury oraz dokumentów, a także wiedzy eksperckiej autorów oraz analizie przepisów prawnych dotyczących planowania przestrzennego. Zaproponowany schemat aplikacyjny UML dotyczący aspektów środowiskowych związanych z ochroną powietrza jest przykładem wykorzystania norm ISO serii 19100. Urbanisści posiadają wiedzę, w jaki sposób mogą poprawić jakość powietrza, ale w obecnym stanie prawnym czasami brakuje narzędzi planistycznych do konkretnych działań. W pracy urbanisty ważnym elementem są dane, które umożliwiają dokładną analizę obszaru.

Słowa kluczowe: dyrektywa INSPIRE, normy ISO 19100, schemat aplikacyjny, urbanistyka, zanieczyszczenie powietrza, zuniﬁkowany język modelowania (UML)