A field experiment was conducted for determination of crop coefficient (K_C) and water stress coefficient (K_s) for wheat crop under different salinity levels, during 2015–2016. Complete randomized block design of five treatments were considered, i.e., 0.51 dS·m$^{-1}$ (fresh water, FW) as a control treatment and other four saline water treatments (4, 6, 8 and 10 dS·m$^{-1}$), for S_1, S_2, S_3 and S_4 with three replications. The results revealed that the water consumed by plants during the different crop growth stages follows the order of FW $>$ S_1 $>$ S_2 $>$ S_3 $>$ S_4 salinity levels. According to the obtained results, the calculated values of K_C significantly differed from values released by FAO paper No 56 for the crops. The K_s values clearly differ from one stage to another because the salt accumulation in the root zone causes to reduction of total soil water potential (Ψ_t), therefore, the average values of water stress coefficient (K_s) follows this order; FW(1.0) = S_1(1.0) $>$ S_2(1.0) $>$ S_3(0.93) $>$ S_4(0.82). Precise data of crop coefficient, which is required for regional scale irrigation management is lacking in developing countries. Thus, the estimated values of crop coefficient under different variables are essential to achieve the best management practice (BMP) in agriculture.

Key words: crop coefficient, saline water, stress, wheat crop